Introductions

Steven McHenry

VP/CTO most recently with NetFlix

Started COP with Al Pappas

Mike Chai

EFI – Foster City

Dave Lipscomb

VP Engineering

Netsuite

Ted Sergott

CIO/VP Engineering

Payment One

Matt Foley

VP at Arkivio

Leonid Grossman

S2IO, Inc.

VP Software Engineering

Chuck Berg

MetaLINCS

Engineering Lead, Messaging Systems

Anna Schulman

Project Management and Training Consultant

Note taker

www.communityofpractice.net
Round Table Discussion

Using Agile and XP Development in Non-Traditional Environments

· Agile Manifesto (can be found on Google)

· better ways of developing software

· a number of well known people have endorsed this (Who’s Who of OO Design books)

· Any individual can add their name

· Would be a good reference for “IT style” of software development

· There are a few axes of software development

· How complicated is the project?

· How many people does it affect?

· How big is the cost of change?

· Can sit with the customer

· Customer probably within the organization

· Agile Software Development allows for making changes easily and doesn’t incur a big cost of change

· Seems to be an umbrella for many different approaches

· The most effective way to communicate within a development team is to talk face to face.

· Bringing the team together on a regular basis ensures that everyone gets to know each other and helps to build relationships

· Applying this may pose significant challenges

· Simplicity – Don’t over engineer

· Agile sweet spots

· 2 to 8 people

· Can be per group and roll up to develop a much larger system

· Onsite usage experts

· End users with domain knowledge

· One month increments

· Next development increment

· Results in significant drop to QA

· Allowed to demonstrate progress and maintain confidence of management/customer/etc.

· There is a difference between having to “deliver” and actually delivering the release to the customer/end user. Don’t want to incur extra costs associated with delivery if you don’t have to

· Agile and other approaches may harness adaptability and agility that could be made compatible with more traditional development environments

· Ted: Previously only two styles of development, Logical and Object Oriented

· Stephen: Used to be in charge of Professional Services group. Group would be very familiar with OO technology but clients weren’t. No good book existed that gave overview so Stephen created “methodology” consisting of many different techniques from many different books. Turned into course that he presented. XP has taken similar approaches and ideas. However, many in XP say that you have to do it all the XP way or you aren’t doing XP.

· Extreme Programming (XP)

· Rapidly changing requirements not clearly defined

· Business changes and therefore requirements change

· When requirements are first defined, sometimes they are not clearly understood

· Priorities change

· Sometimes the first version is more like a proof of concept rather than a fully functional version

· Practices

· The Planning Game

· Because of emphasis on continuous release cycle, constantly update the requirements to fit the release cycle demands. In other words, take out anything the would take more than 4 weeks to do because that would delay the 4 week release cycle

· Small Releases

· Not applicable to all projects

· Testing – having customers write the tests

· How would Intuit, for example, get their customers to test?

· QA people think like 20 customers at once vs. a customer who is only focused on their particular issues

· Pair Programming

· Used instead of doing “walk-through’s”

· Develop efficiently as you cross check it

· One method is to have someone who did not develop the code present it and explain it to a third party with the code developer in the room as a back up resource

· Collective Ownership

· No one “owns” the code – anyone could change any bug at any time

· No ego – everyone buys into ownership of the code

· Over time, as the code gets developed and built upon, it becomes possible that no one who is still with the company wrote the existing code

· Continuous Integration

· Strictly speaking, every time anyone makes a change, a new integration happens

· The effort of integration increases exponentially the longer between integrations. Therefore, decrease the intervals to the smallest possible increment

· Stuff doesn’t stay broken

· Fully automated and only sends out email if something’s broken

· 40-hour week

· Primavera in Pennsylvania is using this with good effect

· The whole company has to buy into this philosophy

· Coding Standards

· Documenting within the code as opposed to outside documentation

· Some “more radical” aspects

· On-Site Customer

· If something happens to that person, a tremendous amount of knowledge and history goes with them

· By bringing the customer to the development site rather than bringing the developers to the customer site, the developers lose valuable insight into the business requirements

· You can only capture so much in the requirements documents. So much can be gleamed by being in the customer environment

· Qualities of Most Compatible Partners

· % refers to the most “popular” answers in what determines the most compatible partner

· Categories for the survey were pre-identified vs. write in

· Benefits

· Note that higher quality code and productivity were not as highly rated benefits as having fun

· Emergent Design

· Not good candidates for emergent design approach

· Other Problem Areas

· This tells me when I’m going to get it but not what I’m going to get

